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Abstract. The dispersion relations of plasmon-polariton modes in quantised thin but finite 
semiconductor films are derived and their characteristics features are discussed. It is shown 
that the lowest two-dimensional unretarded plasma frequency increases strongly with 
decreasing film thickness in the presence of image charge forces. The dispersion relations 
are calculated and illustrated for GaAs and PbTe films. Calculations of the non-radiative 
dispersion spectra indicate that both the transverse magnetic (p-polarised) and transverse 
electric (s-polarised) plasmon-polariton dispersion spectra possess some gaps. The value of 
the gap depends on the thickness of the film and carrier surface concentration. It is found 
that, in thin but finite films, guided and surface localised polariton transverse magnetic modes 
coincide. For transverse electric modes the coupling between external electromagnetic fields 
and carriers is weak and almost insignificant. 

1. Introduction 

Current interest in quasi-two-dimensionally (213) confined charge carriers has been 
enhanced by the recent advances made in the experimental creation of such systems in 
quantum wells, heterojunctions and superlattices. A great deal of interest has been 
attached to the theoretical study of collective oscillations of electrons in these systems. 
The dispersion relations for collective plasmon modes have been investigated for both 
low-frequency intra-sub-band (Stern 1967, Fetter 1973, Nakayama 1974) and high- 
frequency inter-sub-band excitations (Chen et a1 1976, Allen et a1 1976) in semiconductor 
quantum wells. In particular, it has been shown that in the non-retarded limit the low- 
frequency 2D plasmon associated with the ground sub-band has dispersion 

w - q q E ,  (1.1) 
where q is the in-plane wavevector and E the permittivity. The high-frequency inter- 
band excitation branches are shifted from the sub-band separation energies owing to 
polarisation, 

Dah1 and Sham (1977) and Eguiluz and Maradudin (1978) gave a more complete 
analysis of a quasi-2~ gas in thin but finite semiconductor inversion layers by means 
of the random phase approximation (RPA) including the effect of retardation. They 
constructed the non-local frequency-dependent dielectric tensor in the RPA and used the 
Maxwell equations to study the electromagnetic surface properties of the quantum wells. 
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Beck and Kumar (1976) and Dah1 and Sham (1977) have included the effect of the 
image charges (EICH) and noted that in the important long-wavelength limit the EICH 
appears in the dispersion relations for the low-frequency region only. Even there this 
effect is comparatively weak and amounts to replacing E by ( E  + eIns)/2, where eIns is the 
oxide dielectric permittivity. 

Very recently it has been shown (Aharonian et a1 1988) that the EICH on the collective 
plasmon spectra in thin semiconductor films does lead to radical changes if the dielectric 
permittivity E of the semiconductor is much larger than that of the substrate. 

Aharonian et a1 showed that in the long-wave limit (qd < 1) the lowest non-retarded 
2~ plasmon frequency is 

- (1/4{q/[qd + (E1 + &2)/EI)”* (1.2) 
which increases strongly with decreasing film thickness d. In (2), are the permittivities 
of the bounding media. In particular, (2) has the property that in the wavevector region 

1 %- qd %- ( E ~  + E * ) / &  

w is independent of q.  
The purpose of the present work is the extension of the previous paper to include 

retardation. Thus we deal with the coupling between photons and plasmons to form 2~ 
plasmon-polaritons in a thin semi-conductor film sandwiched between bulk media. 

Our theory will be based on a common procedure in thin-film optics (Agranovich 
1975, 1982) according to which the film is regarded as a transition layer between bulk 
media. The derivation of the boundary conditions for the fields outside the layer can be 
carried out directly within the framework of the Maxwell equations. The presence of 
the film will be taken into account only by these boundary conditions, which are more 
general than ordinary conditions, because they include the polarisability of the layer in 
the direction perpendicular to the interfaces. The theory provides both quantitative and 
qualitative links between the charge sheet (Nakayama 1974) and bulk slab models (Fuchs 
and Kliewer 1966, Mills and Maradudin 1973) of 2D plasmon-polaritons. 

The outline of this paper is as follows. In 8 2, we describe the macroscopic theory of 
transition layers between bulk dielectric media including effective boundary conditions, 
which take into account the dependence of the dielectric properties on the parameter qd .  
Section 3 consists of the application of the effective boundary conditions for derivation 
of the 2~ plasmon-polariton dispersion relations. Both transverse magnetic ( p) and 
transverse electric (s) polarisations are discussed. In 8 4, we give alternative derivations 
of the dispersion equations by means of the macroscopic bulk slab models. Section 5 
contains our comments and conclusions. The detailed derivation of the effective bound- 
ary conditions is given in the Appendix. 

2. Effective boundary conditions for fields in the presence of a macroscopic homogeneous 
and isotropic transition layer 

Let the z axis be normal to the semiconductor layer interfaces. Assume that the layer 
occupying region 3 (0 s z s d )  has a background dielectric constant E and contains free 
electrons distributed with an average surface concentration N .  The thickness d is much 
larger than the lattice constant a ,  but much smaller than the light wavelength A .  The 
substrate half-space layer 1 ( z  < 0) is filled with a medium having a dielectric constant 
E ~ ,  and the half-space 2 ( z  > d )  with a medium having a dielectric constant E ~ .  
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Electron motion parallel to the interface is considered free in the effective-mass 
approximation and the effective-mass tensor is taken to be diagonal with m, = my = m,, 
m, = ml. Motion perpendicular to the interface is quantised and, in the familiar model 
of a square well with infinite walls, the single-particle spectrum has the form 

E,  = (h2n2/2mld2)s2 (2.1) 

qs ( z )  = ( 2 / d )  ‘I2 sin(nsz/d) (2.2) 

with wavefunctions 

wheres = 1,2 ,  . . . is the sub-band number. 

to the interface and qs(z); so the total single-particle energy is 
The wavefunction of an electron is the product of a planewave with vector q parallel 

E,, = E ,  + h2q2/2m,. 

We assume that the electron plasma is weakly non-ideal, i.e. the effect of the Coulomb 
interaction is relatively small. For this to hold the electron gas must be sufficiently dense, 
i.e. K O  Z=- a i ’ ,  where KO is the 2~ Fermi momentum and a. is the effective Bohr radius 
(Chaplic 1971). For very low temperatures with only one sub-band filled, Kg = 2nN and 
the condition of weak non-ideality can be written Nu; Z=- 1, i.e. the number of electrons 
in the area of a Bohr orbit should be large. Our theory applies in this case only. 

We take into account the polarisation of the film in the direction perpendicular to 
the boundaries. The electromagnetic response of the film is completely determined by 
the dielectric permittivities of the bounding media and this polarisation. In fact, the 
induced dielectric induction vector D is given by (Dahl and Sham 1977, Eguiluz and 
Maradudin 1978, Keldysh 1978) 

Di(q, 0 , z )  = &Ei(q, w ,  2 )  + 4nc7ijFj(sz)aj(0, s) 

x IO‘ E,(q, W ,  z’)F,* (sz’) dz’  

where E is the electric field and i, j = x, y ,  2. The summation convention applies. 

sitions between sub-bands, to which we hope to return in a later work. 

(Dahl and Sham 1977) 

We restrict attention to the case of substantially 2D plasmons and also ignore tran- 

For this case and in the long-wave approximation (qd < l ) ,  a] and F, have the form 

a = &,(U, 1) = Lyy(W,  1) = - 5 2 y w 2 ,  (2.5) 

az(w,  1) = 0, (2.6) 

F X J W  = d1’*+r1(Z)+1(Z) (2.7) 

F,(lz) = 0 (2.8) 

SZi = 4nNe2/m,. (2.9) 

E i ( r )  = E ,  exp(iqx - K ,  121) (2.10) 

H , ( r )  = H ,  exp(iqx - K,jzl) (2.11) 

Solutions of the Maxwell equations localised near the film are sought in the form 
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where E,exp(-K,lzl) and Hi exp(-K,lzl) are the amplitudes of the electric and mag- 
netic fields in the half-space n (n  = 1, 2) and the x axis is taken as the direction of 
propagation. We consider non-radiative waves, for which 

K: = [q2 - (w'/c~)E,] > 0. (2.12) 

Following the usual method in the optics of thin films (Agranovich 1975) we use general 
effective boundary conditions derived in the Appendix and discussed by Agranovich 
(1982) and Keldysh (1978). From the Appendix these boundary conditions in the long- 
wave limit (qd < 1) are shown to be of the fofm 

H p ( d )  - Hil)(0)  = iqd[Hi3)(0) + Hi3)(d)]/2 - (iw/c)d(E + 4na)[Ef ) (O)  (2.13) 
+ E$3)(d)]/2 

H f ) ( d )  - Hp)(O) = (iw/c)(E + 4na)[Ei1)(0) + E$*)(d)]/2 (2.14) 

Ei2)(d)  - E!')(O) = iqd[Ei2)(d) + Ei1)(0)]/2 + (iw/c)d[Hi2)(d) + HF)(0)]/2 (2.15) 

E f ) ( d )  - Ep)(O) = (iw/c)d[HF)(O) + Hi2)(d)]/2 (2.16) 

where E$'*') and Hj1,2) are the plane boundary values of the electric and magnetic fields 
in the half-space 1 and 2. Here the presence of the film appears within the small quantities 
of the first order qd < 1. 

3. 2~ plasmon-polaritons in thin films 

In this section, we derive the 2D plasmon-polariton dispersion relations in a semi- 
conductor quantum film by means of (2.13)-(2.16). They separate into two disconnected 
sets, which are transverse magnetic (TM) (involving H 1 1  q X n) and transverse electric 
(TE) (involving E 1 1  q X n). 

The derivation from (2.13) to (2.16) rests ultimately on (2.2) and the model of infinite 
walls. However, the results to be obtained are in fact more general, as can be seen from 
the derivation on the basis of entirely macroscopic considerations in 0 4. 

3.1. TM modes (p-polarisation) 

In this case the electromagnetic-field boundary amplitudes from (2.10) and (2.11) are 

where c is the velocity of light. 

dispersion relation 
Substitution of (3.1) and (3.2) in (2.13) and (2.14), with use of (2.5) for a, gives the 

s1/K1 + ~2 /K2  = [ ( Q 2 , / ~ ) '  - &]d. (3.4) 

Before discussing the dispersion law w = w ( K )  from (3.4), it is useful to note some 
relevant features. 
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Figure 1. The dispersion relation of TM 2D plasmon-polaritons for GaAs with d = 150 8, 
and N = 0.5 x lo'* cm-2 embedded in media with = 13: -, dispersion curves; ---, 
light line; -.-, frequency values U, ,  w,  and w 2 .  Both the frequency and the wavenumber 
are plotted in reduced units y = w / w t  and x = 4/9, ,  where U)! = cyt/cl  '. The values of U,, 
0, and yt are illustrated in table 1. 

In the unretarded limit (e+ x ) ,  (3.4) reduces to 

w = {(4nNe2/m,&)q/[qd + ( E ~  + E ~ ) / E ] } ' / ~  (3.5) 
as derived previously by means of RPA method (Aharonian et al 1988). For qd G 1 and 
E - q 2 ,  (3.5) becomes 

w = ( [ 4 n ~ e ~ / m , ( ~ ,  + ~ ~ ) ] q } ' / ~  (3.6) 
which is the result of Stern (1967). 

For E S and qd G 1 the dispersion relation takes the form 

w = { [ 4 ? ~ ~ e ~ / m , ( ~ ~  + ~ ~ ) ] q ) ' / *  

w = {4nNe2/m,~d}'I2 

qd G ( E ~  + E ~ ) / E  < 1 (3.7) 

(3.8) 

and 

( E *  + E ~ ) / E  G qd G 1. 

Thus the EICH on the 2~ plasmon dispersion spectra is significant for 
It can be seenthatforcertainvaluesof w anddtheright-handside of (3.4) may become 

negative, in which case the non-radiative TM mode dispersion spectrum possesses some 
gaps. On the contrary as d+  0 in (3.4), we recover the 2D charge sheet non-radiative 
dispersion relationships (Nakayama 1974), which have solutions for any w .  

G E only. 

The position of any gaps is found from the condition 

(Q,/w)2 - E = 0. (3.9) 
By way of example, let the medium 0 < .z S d be a polar semiconductor with E of the 
form 

E = &,(U2 - w?)/(w2 - w : )  (3.10) 

where wl and w, are the longitudinal and transverse optical phonon frequencies and E, 

is the semiconductor high-frequency dielectric constant. 
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Figure 2. The low-frequency dispersion curve of T M ~ D  plasmon-polaritions for a GaAs film 
on an expanded scale. 

Table 1. Characteristic parameters for GaAs with d = 150 8, and N = 0.5 X 10l2 cm-2 

GaAs 0.063 12.9 10.9 5.52 5.23 13.03 13 3.02 

By solving (3.9) with (3.10), we find the roots col and w 2  of (3.9) which are 

(3.11) 

We now investigate the dispersion law w = w ( K )  in the symmetric geometry el  = E ’ ,  

for which comparatively convenient analytic expressions can be found. In particular, 
(3.4) yields the solution 

4 = E! ’~(w/c) {~ + A W ’ ( ~ ~  - O ~ ) ~ / [ B ( O J ’  - 0:) - w‘(w’ - CO~)]’}’’’ (3.12) 

where 

A = 4 e I c 2 / ~ i d 2  B = !2;/ea. 

We illustrate the properties of the dispersion law (3.12) by means of a dispersion graph. 
As our example we choose a GaAs film. The results are shown in figures 1 and 2 with 
reduced units y = w / w ,  and x = q/qt where q, = (w, /c)  ~ f / ~ .  Values of the parameters 
used are given in table 1. 

From figure 1, we can see that the dispersion spectra of TM plasmon-polaritons 
in thin films possess gaps and the frequency intervals 0 6 w < w1 (0 s w / w t  < w l / w t  in 
the graph) and w,  s w < w2 (1 6 w/w,  < w z / w ,  in the graph) are allowed regions for 
the non-radiative plasmon-polariton TM waves. It follows from (3.11) that, in the formal 
limit d + x ,  we have w1 + 0 and w2 + wl. So in that case the allowed frequency interval 
is w, S w S wl only, which corresponds to the surface-localised modes in the bulk slab 
model (Ushioda and Loudon 1982, Cottam and Tilley 1989). In the opposite case when 
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Table 2. The numerical boundary values of the allowed frequency regions y ,  = w l / o t  and 
y 2  = w 2 / w t  and also the width Ay1 = 1 - y ,  of the gap betaeen the first and second allowed 
regions and the width Ay? = y 2  - 1 of the second allowed region. 

Y l  Y 2  AY 1 AY 2 

GaAs 0.685 1.102 0.315 0.102 

d -+O in (3.4) we recover the 2~ charge sheet dispersion curve (Nakayama 1974), 
which does not possess any gaps in the frequency spectra. So equation (3.4) with the 
corresponding graph contains both the bulk and the charge sheet dispersion patterns in 
the long-wave limit (qd  e 1). This means that our model provides the link between these 
models. 

The value of the gap A w  = w,  - w as follows from (3. ll), depends on the quanti- 
ties Q,, U,, wl and E , .  For given m",  A w l  is large when E ,  is large and'increases with 
decreasing N .  Values are given in table 2. 

We now discuss further some characteristic features of the dispersion law (3.12) with 
reference to figure 2. 

(i) When w w,, 51, as follows from (3.12), the spectral dependence is 

q = &p <w/c)  (3.13) 

where the dispersion law depends on only the substrate dielectric constant. From (3.13) 
we conclude that for the same values of the wavenumber q with decreasing values of 
the frequency values are increasing and the dispersion curve becomes closer to the 
frequency axis (the y axis in the graphs). Therefore the radiative area, which lies to the 
left-hand side of the light line (3.13), is decreasing. 

(ii) In the particular case Q; * &w2 ( E  is defined in (3.10)) the spectral law w = o(q) 
is given by 

q = (2&,/R2,d)W*. (3.14) 

Numerical estimates show that the law (3.14) applies in GaAs for wavevectors of about 
lo5 cm-' (it corresponds to values x 2 20 in figures 1 and 2). It is further seen from figure 
2 that the dispersion curve departs from the light line (3.13) for relatively low frequencies 
in accordance with (3.12). 

(iii) In the allowed frequency interval wl S w < w 2  (1 S w / w ,  < w 2 / w ,  in the graph) 
the spectral curve departs from the light line (3.13) quite abruptly as characterised by 
law (3.12). 

As we can see from figure 1 the dispersion curve diverges for the values wl/wl and 
wz/w, ,  which are defined by (3.11); the first dispersion curve in the region 0 s o / w ,  < 
w l / o t  represents the 2~ plasmon. 

3.2. TE modes (s-polarisation) 

The TE electromagnetic-field boundary amplitudes are 

H$')(O) =I ( icK, /w)Ep)(O) 

H$*)(d) = -(icK2/w)E$2)(d) 

(3.15) 

(3.16) 
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H p  (0) = (cq /o)E$l )  (0) (3.17) 

H f ) ( d )  = (cq/w)E$2)(d) (3.18) 

E,  = E ,  = H ,  = 0. (3.19) 

After substituting in the boundary conditions, we find the dispersion relationship for 
the TE plasmon-polarition modes in the form 

K2 + K1 = [ E ( w ~ / c ’ )  - q2  - Q;/c2)d. (3.20) 

As in the TM case we shall assume that c1 = E ~ .  In this case, (3.20) has the following 
solution in the long-wave limit (qd  1): 

= [{4&1(W2//c2) - & i ( W 4 / C 4 ) d 2 [ ( O Z  - O t ) / ( 0 2  - W f )  - S2;/O2&,]*} 

for the frequencies W ,  for which the right-hand side of (3.20) is not negative. We have 
made numerical calculations of dispersion graphs based on (3.21). In all cases, however, 
the dispersion curves are very close to the light line q = E : / *  W / C ,  and they are therefore 
not shown. This simple behaviour arises because of the dominance of the first terms in 
both the numerator and the denominator of (3.21). 

4. Alternative derivation of the 2~ plasmon-polariton dispersion relations in quantised 
films 

We now show how the 2~ plasmon-polariton dispersion relations can be derived from a 
bulk slab model. As before, two plane interfaces are situated at z = 0 and z = d.  The 
medium 1 ( z  < 0) has a dielectric constant and medium 2 ( z  > d )  a dielectric constant 
E ~ .  The semiconductor slab occupies the region 0 < z d and has a dielectric constant 
E,. As is well known, (Ushioda and Loudon 1982, Cottam and Tilley 1989) for a 
sufficiently large thickness, d-independent p-polarised surface polaritons propagate on 
each interface in the appropriate frequency range. As d decreases, the fields of the 
two surface polaritons propagating for a given wavevector q start to overlap, and the 
degeneracy in frequency between them is lifted. Thus we expect to see two modes, 
essentially a bonding and anti-bonding combination. The quantities K1 and K2 from 
(2.12) must always be real (in the absence of damping), and 

K ,  = [ q 2  - E 3 ( W 2 / C 2 ) ] 1 j 2  (4.1) 

is real for the surface-mode case just described. In addition, however, K ,  can be 
imaginary, in which case the z dependence of the fields in the medium 0 =S z =S d is 
oscillatory, so that the medium is behaving like a waveguide. Thus in p polarisation in a 
slab both surface and guided-wave polaritons may occur. 

I n s  polarisation, on the contrary, only guided-wave polaritons are found. 
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4.1 .  r M  polaritons ( p  polarisation) 

The dispersion relation for this mode has the form (see, e.g. Cottam and Tilley 1989) 

exp(-2K3d) = [r: + r1r2  + r3 ( r1  + r 2 ) ] / [ r !  + r l r 2  - r3 ( r1  + r 2 ) ]  (4.2) 
where 

71 = El/Kl ( i  = 1,2,3) .  

Equation (4.2) applies to both surface polaritons and guided-wave modes depending on 
whether K, is real or imaginary. 

After a few simple transformations, we can get from (4.2) 

[exp(-2K3d) + 1]/[exp(2K3d) - 11 = (r: + r l r 2 ) / r 3 ( r l  + r z ) .  (4.3) 
Expanding (4.3) to lowest order in K3d < 1 and solving for r, ,  we find that 

r3 = - ( 1 / K 3 d ) ( r 1  + r 2 ) .  

E1/K1 + E z / K ~  = -E3d. 

E3 = E - Q ; / W 2  

Q; = 4nNe2/m,d 

(4.4) 

(4.5) 

(4 6 )  

(4 * 7) 

If we substitute the expressions for r, in (4.4), we obtain 

Now we assumne that E, has a plasma-like part: 

where E is the background dielectric constant and Qp is the plasma frequency (2.9): 

since N is the areal density. 
If we combine equations (4.5)-(4.7), we get the dispersion relation (3.4). 
This derivation holds for both real and imaginary values of K, and in effect means 

that, in very thin films, guided and surface polariton slab modes coincide. 

4.2. TE polaritons (s polarisation) 

The derivation of the dispersion relation for TE polarised guided-wave modes is similar 
to that for TM modes. It emerges that the equations for p polarisation can be converted 
to those fors polarisation by the substitutions (Cottam and Tilley 1989) 

Note, however, that, since only guided modes occur, K3 is pure imaginary. 
Thus, substituting (4.8) into (4.5) in the lowest order K3d < 1, we have 

K1 + K2 = -K$d. (4.9) 
With the use of (4.1) and (4.6) this is seen to reduce exactly to (3.20). 

5. Conclusions 

The theory outlined above for the 2D plasmon-polariton modes in thin quantised but 
finite films provides the link between the charge sheet (Nakayama 1974) and bulk slab 
(Mills and Maradudin 1973, Fuchs and Kliewer 1966) models used previously. Here it 
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has been shown that TM polarised 2~ plasmon-polaritons in thin but finite films are the 
limit of either surface or guided modes, which are coincident in this case. The most 
striking feature is the existence of energy gaps in the dispersion spectra. The magnitude 
of these spectral gaps depends on the film thickness, carrier surface concentration and 
dielectric constants of the neighbouring media. For the TE polarised modes the coupling 
between the external electromagnetic field and carriers in the film is weak and the 
dispersion law in very close to the light line. 
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Appendix 

We give here the derivation of the effective boundary conditions which were used in 
§ § 2 and 3. As before in Q 2, we take the z axis normal to the interfaces, which are 
situated at z = 0 and z = d .  The x axis is taken along the direction of wave propagation. 
The monochromatic fields E ,  D and H vary in space according to the law 

A ( r ,  t )  = A(z) exp[i(qx - ut)]. (AI) 

In order to obtain the boundary conditions we integrate the Maxwell equations with 
respect to z between the limits z = 0 and z = d.  For the components of the magnetic 
field strength H ,  we make use of the equation 

V x H = -(iw/c)D. 

aH,(z) /dz  - iqH,(z) = -(iw/c)D, 

(A2) 

For the xth component of the fields of the type (Al), we have from (A2) 

(A31 

which, after integrating together with (2.4) with respect to z between the limits z = 0 
and z = d .  becomes 

d d 

- 4na, ( w ,  1) / F,( lz )  d z  / E:?)(z')F, (12') dz ' .  
.'O J O  

The quantities H:")(d) (as well as E j " ) ( d ) )  in (A4) can be formally represented as the 
expansion 

HI")(d)  = H,(")(O) + d[dHj")(O)/dz]/,=, + . . . . ( A 9  

Now we follow the usua! method in the theory of the transition layer and take into 
consideration only the leading terms in the small quantities qd and ( w / x ) d .  
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Since the boundary conditions 

H p  (0) = HL3)(O) H p  (d) = H p  (d )  

apply, expansion of (A4) to lowest order gives 

Hi2)(d) - Hil)(0) = iqHi3)(0)d - (iw/c)d(E + 4na)Ei3)(0). 

In fact, (A7) can be used in the more convenient form 

~ p ( d )  - H ~ ( o )  = iqd[~i3) (0)  + ~ p ( 4 / 2  

- (iw/c)d(E + 4n~x)[E$~)(O) + EF)(d)]/2 

which is identical with the lowest order. 
In the same way, we derive for the Hy component the boundary condition 

H f ) ( d )  - HF)(O) = (ico/c)(E + 4na,)[Ei1)(O) + EL2)(d)]/2. 

For the components of electric fieldB, similar manipulations produce from the equation 

V x E = (iw/c)H ( A W  

~ $ ~ ) ( d )  -~! l )  (0)  = iqd[EL2) (d )  + Ei1)(0)]/2 + (iw/c)d[Hy) (d )  + HF) (O)]/2 (All)  

E f ) ( d )  - E F ) ( O ) =  - ( iw/c)d[HL1)(0)+H~2)(d)] /2 .  ( A W  

the boundary conditions 
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